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Abstract. One of the critical barriers in transitioning new materials development into 
engineering practice is the uncertainty associated with the data that is used in the 
materials design process. While constitutive modeling strategies still form the 
foundations for computational materials design, uncertainty and incomplete information 
still pervade. Often the available data space is limited, and the challenge of using that 
data to develop computational studies for exploring new materials is made difficult. In 
this paper we describe how the application of information entropy metrics coupled with 
the tracking of the statistics of data evolution can aid in identifying key structure-property 
relationships in materials. This information in turn can aid in identifying new materials 
chemistries with targeted properties narrowed down from a large and sparse chemical 
search space. A brief example in the discovery of new solid-state electrolytes for fuel cell 
examples is given as a template for this informatics-aided computational infrastructure.  

 
 
1. Introduction 
 

“One of the continuing scandals in the physical sciences is that it remains impossible to 
predict the structure of even the simplest crystalline solids from knowledge of their composition” 
[1]. This provocative observation—as well as similar ones made by other materials scientists 
over the past 50 years [2-5] —captures one of the great questions in materials crystal chemistry, 
namely, why do atoms arrange themselves in the way they do?  The corollary to this question is 
the following:  Given that the underlying crystal structure defines many fundamental properties 
of materials; can we identify the chemistries and the associated crystal structure to define 
specific characteristics of materials so that we can use this information to create new materials 
with specifically tailored properties? Despite advances in theory and computation, we still do not 



have sufficiently robust physical models that can span enough chemistries to explain how atoms 
interact. To understand the complexity of the problem, consider the 76 useful stable elements in 
the periodic table. There are 2,850 binary, 70,300 ternary, 1,282,975 quaternary, and > 109 
heptanary combinations of these 76 elements. It would be almost impossible to model all 
permutations of atomic-scale interactions, let alone experimentally synthesize different 
chemistries. This situation, in essence, defines the challenge that materials scientists face in 
systematically designing new materials chemistries, namely, exploring an unwieldy large 
chemical space with relatively little data that is known. We can, however, draw some guidance to 
address this issue by looking at systems biology, where the combination of systems-level 
experimentation and the use of quantitative and computational tools to integrate, visualize, and 
analyze the resulting experimental data has made it possible to systematically identify and 
characterize molecules and the molecular interactions that define cellular pathways, tissues, 
organs, and organisms. This allows us to obtain a quantitative and predictive understanding and 
derive solutions to fundamental biological problems based on dynamic relationships between 
genetic, molecular, cellular, physiological, and environmental factors. 

Similarly, unraveling the complex relationships between structure, bonding, and 
chemistry in inorganic materials—for example, identifying pathways that demonstrate how 
parameters describing electronic structure, chemistry and crystal geometry “communicate” with 
each other to ultimately define properties—is needed to achieve significant advances in materials 
science. Through many seminal papers, Sir Alan McKay has expounded on the idea of a 
framework for “generalized crystallography” [6]. He has proposed that the crystal is a “structure 
the description of which is much smaller than the structure itself” and that this description of 
structure serves as a “carrier of information” about the structure on larger length scales [7,8]. He 
also suggested that these components of description of structure can help develop a “biological 
approach to inorganic systems” and proposed the construction of an “inorganic gene”. This 
serves as the motivation underlying the present study by exploring how fundamental pieces of 
information, treated as discrete bits of data, can collectively characterize the stability and 
properties of a given crystal chemistry.  We show how the use of statistical learning tools, 
including fundamental concepts borrowed from information theory, can be used to characterize a 
crystal structure in terms of fundamental descriptors of information (i.e., the “genes”) and how 
these pieces of information are “sequenced” to guide the characteristics of that crystal structure 
and in fact help guide the development of new crystal chemistries.  

The challenge in defining the gene in inorganic crystal chemistry is to characterize the 
appropriate combination of discrete characteristics associated with crystal chemistry that 
collectively define a particular property or set of properties of the material. Normally structure- 
property relationships are guided by defined functional relationships (e.g., electronic structure 
calculations to define energy landscapes associated with crystal chemistry). In this paper we 
describe an approach to establish such a structure-property relationship where we do not assume 
any specific formulation linking structure with property. Rather we take a data-driven approach 
where we seek to establish structure property relationships by identifying patterns of behavior 
between known discrete scalar descriptors associated with crystal and electronic structure and 
observed properties of the material. From this information we extract design rules that allow us 
to systematically identify critical structure-property relationships resulting in identifying in a 
quantitative fashion the exact role of specific combination of materials descriptors (i.e. genes) 
that govern a given property. This is the foundation of the concept of the quantitative structure-
activity (or property) relationship, QSAR/QSPR, widely used in the field of organic chemistry 



and drug discovery. We have shown the potential impact of applying this strategy for identifying 
new high-temperature piezoelectric materials [9]. 
 
In this paper, we demonstrate this approach by striving to track which combination of parameter 
appear to influence crystal stability by partitioning high-dimensional data sets. Using the concept 
of information entropy (e.g., Shannon entropy) as a selection criterion, we propose a high-
dimensional recursive partitioning strategy to develop classification schemes that previouslyhave 
been approached by empirical observations. Thus, the aim of the classification is to reduce the 
uncertainty of the dataset and to track precisely which and how many latent variables contribute 
to structural stability. Using such information content measures, we will be able to quantitatively 
rank the influence of a vast array of parameters. 
 
 
2. Exploring the chemical search space  
 

Increasingly, scientists need to discover new oxide-ion conducting materials, since such 
materials form the basis of a range of important, environmentally friendly applications such as 
sensors, gas separation membranes and solid oxide fuel cells (SOFCs). In particular, the impact 
of SOFCs has held the greatest potential for next generation power production [10]. Normally, 
SOFC systems are operated in the high temperature regime of 850-1000°C [11]. The operating 
temperature is influenced by the nature of application and properties of available solid 
electrolyte. One of the well-known solid electrolytes that is widely employed in SOFC 
applications is yttria-stabilized zirconia (YSZ), which when operated at temperatures greater than 
800°C exhibits high oxide-ion conductivity [12]. The operation of a fuel cell at such high 
temperatures poses major problems related to the stability of the electrolyte-electrolyte interface 
and selection of the expensive bipolar-plate material [12]. Additionally, for portable 
(intermittent) power applications, lower-temperature operation is typically favored as it enables 
rapid start-up and minimizes stress due to thermal cycling [13]. As a result, discovery of 
potentially new solid electrolytes that can maintain relatively high oxide-ion conductivity at the 
intermediate temperatures has been an active area of research [14-18]. To this end, several new 
solid electrolytes have been proposed, such as gadolinium-doped ceria, La0.9Sr0.1Ga0.8Mg0.2O2.85, 
Bi2V0.9Cu0.1O5.35, and Si- and Ge-oxyapatites. Among these potential solid electrolytes Ge-
oxyapatites are a relatively new class of materials. Recently Léon-Reina et al. [15] identified 
high oxide-ion conductivity in Al-doped Ge-oxyapatite with the oxide-ion conductivity 
comparable to that of gadolinium-doped ceria (see Figure 1). High conductivity coupled with the 
high ionic transport number in a wide range of oxygen partial pressure (0.21 to 10-20 atm) make 
these Ge-oxyapatite materials attractive for intermediate-temperature, solid-oxide fuel cell 
application. In contrast with the conventional fluorite and perovskite oxide-ion conductors, 
where the oxide-ion transport is mediated by vacancy-hopping mechanism, high oxide-ion 
conductivity in Ge-oxyapatites are interstitial oxygen atoms [16]. The objective of this work is to 
identify potentially new materials with apatite crystal structure that have high oxide-ion 
conductivity at the intermediate temperature regime through data mining methods. In particular, 
we have focused on Ge-oxyapatites because of their superior oxide-ion conducting properties.  

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Ge-oxyapatites are conveniently described by the general formula Ln9.33+xGe6O26+3x/2, where 
the Ln-sites usually accommodate larger divalent (Ca2+, Sr2+, Pb2+, Ba2+ etc.) and trivalent (Y3+, 
La3+, Ce3+, Nd3+, Sm3+, Dy3+ etc.) cations. Smaller 4+, 5+ and 6+ metals and metalloids (Ge4+, 
Si4+, P5+, As5+, V5+, W6+, etc.) fill the Ge-site. The complex chemical search space of apatite 
crystal chemistry is shown in Figure 2. Previous experimental studies have shown that samples 
with x up to 0.67 can be prepared with single-phase apatite structure [17]. The crystal structures 
of Ge-apatites play a major role in oxide-ion conduction. Two competing design criteria must be 
satisfied for high oxide-ion conductivity in Ge-apatites [18]: (1) high concentration of O2-
interstitials in the lattice and (2) hexagonal crystal structure with P63/m space group. From 

Figure 1. The objective of this research is to identify potentially new solid electrolytes that have 
high oxide-ion conductivity (represented as TARGET) in the intermediate temperature regime. 
Only a few solid electrolytes are known that have high oxide-ion conductivity. Ge-oxyapatites 
(e.g., La9.5Ge5.5Al0.5O26) are a relatively new class of materials with excellent properties for fast 
ion-conduction. The focus of this work is to develop a computational approach based on data-
mining methods for accelerated exploration of the complex Ge-oxyapatite chemical search space 
in order to rapidly discover potentially new solid electrolytes with oxide-ion properties nearing 
the TARGET limit. In this paper, we specifically address the challenge associated with the 
prediction of crystal structure of these complex materials. 



experiments, however, it is known that as the concentration of O2 ions increases in the unit cell, 
the crystal structure changes its symmetry from hexagonal to triclinic. Triclinic structure 
enhances defect trapping; as a result, the oxide-ion conductivity is drastically reduced. The 
challenge here is to identify potentially new chemistries that help achieve high oxygen contents 
(in the form of interstitial defects) in the Ge-apatite lattice, while still maintaining hexagonal 
symmetry. Analogous to the knowledge base of multicomponent materials as mentioned earlier, 
in the case of apatite structures our existing knowledge (or data) base is relatively small (see 
Figure 2). Our initial experimental survey has indicated that only about 18% of the total 
permutation is experimentally explored. Our goal is to explore the remaining 82% of the search 
space using the data mining. From the initial limited dataset, we propose new materials using 
information entropy concepts. Shannon entropy metrics coupled with recursive partitioning 
method is used to discover the specific combination of dominant descriptors that govern the 
apatite phase stability. From this we extract chemical design rules that allow us to systematically 
develop relationships resulting in identifying in a quantitative fashion the exact role of specific 
combination of materials descriptors that govern the stability of a chemical compound. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Schematic of the search space of apatite crystal chemistry. Apatites are described by the general 
formula AI

4AII
6(BO4)6X2, in connection with the contents of a hexagonal unit cell  of the space group  

P63/m where AI and AII are distinct crystallographic sites that usually accommodate larger divalent (Ca2+, 
Sr2+, Pb2+, Ba2+, etc.), monovalent (Na+, Li+ etc.) and trivalent (Y3+, La3+, Ce3+, Nd3+, Sm3+, Dy3+ etc.) 
cations. B cation sites are filled by smaller 3+, 4+, 5+, 6+\, and 7+ metals and metalloids (P5+, As5+, V5+, 
Si4+, etc.), and the X anion site is occupied by halides (F-, Cl-, Br-, I-), hydroxyl or oxide ions. In this work, 
we focus on Ge-oxyapatites, which can be described with the general formula Ln9.33+xGe6O26+3x/2. In the 
Ge-oxyapatite stoichiometric space, there are 22 elements that can occupy Ln-site and 18 elements that 
can occupy Ge-site. Overall, we have more than 10,000 chemical combinations possible. Of which only 
about 18% have been experimentally explored. 
 



3. Mathematical preliminaries  
Recursive-partitioning [19, 20] is an exploratory data analysis technique where we construct 
models by successively splitting a large dataset into increasingly homogeneous subsets until it is 
not feasible to continue, based on some well-defined constraints. The output from a recursive 
partitioning analysis is a dendrogram (or a decision tree) with branches grown on each node to 
classify the crystal symmetry of Ge-apatites. Let  be the database that contains 77 
Ln9.33+xGe6O26+3x/2 compounds, ten structure governing factors, and a label that explains whether 
a particular Ln9.33+xGe6O26+3x/2 compound will have single-phase hexagonal crystal structure or 
single-phase triclinic crystal structure or not a single-phase apatite region. A total of 49 
compounds have single-phase hexagonal crystal structure, 21 compounds have single-phase 
triclinic structure, and 7 compounds do not have single-phase apatite structure. The expected 
information required to classify an Ln9.33+xGe6O26+3x/2 compound solely based on its proportion 
in the database  is given by the Shannon entropy : 
 

               
(1) 

 
where  is the probability that an arbitrary Ln9.33+xGe6O26+3x/2 compound in “ ” belongs to 
single-phase hexagonal crystal structure or single-phase triclinic crystal structure or not a single-
phase apatite region and  is an integer. The unit of entropy is in bits. Now suppose the 
Ln9.33+xGe6O26+3x/2 compounds in  are to be partitioned by using some structure-governing 
factor . Then the amount of information we would still need (after partitioning) for 
classification is quantified by 
 

              (2) 

 

The factor  acts as the weight of the jth partition. In this work, we have considered only 

binary split, which implies j=2. The smaller the expected information required, the greater the 
purity of partition. The next step is to compute the “gain ratio,” defined as the ratio of the 
difference between the original information requirement,,  and the new requirement that is 
obtained after partitioning on ,  to the potential information generated by splitting the 
database  on attribute . 
 

               (3) 

 
This process of calculating the gain ratio is repeated for all 13 structure-governing factors and 
the structure-governing factor with the maximum gain ratio is selected as the splitting attribute. 
The whole cycle is repeated recursively until it is not feasible to continue splitting the database  
based on the stopping criterion (the final node should not contain less than three 
Ln9.33+xGe6O26+3x/2 compounds). In order to avoid overfitting, a postpruning operation is 



employed. The outcome of recursive partitioning is a dendrogram (or a tree diagram), which 
captures the physics governing the formation of stable Ln9.33+xGe6O26+3x/2 apatite compounds. 
 
4. Developing informatics-based crystal chemistry design rules 
 
We begin our approach by considering the materials that we already know from experiments 
(and hence, by definition, are stable) for which we have a priori information on the concentration 
of O2 defects in the lattice and its corresponding crystal structure (our knowledge-base) [14-18]. 
The key question is, What makes these material chemistries behave the way they do? Our goal is 
to identify other unexplored material chemistries that may have a similar behavior. Normally 
electronic structure calculations are employed to address this challenge. Instead, we introduce an 
alternative approach driven by a data-mining method for accelerated identification of potentially 
new chemistries satisfying the design constrains. The logic of our approach is described here: 

• We characterize the materials by identifying discrete scalar descriptors associated with 
crystal structure, electronic structure, and crystal chemistry, as shown in Figure 3. 

 
 
 
Figure 3. Crystal structure of a typical hexagonal apatite with P63/m crystal symmetry. The complex 
crystal structure has two distinct Ln-sites (shown as LnI and LnII) and the tetrahedral Ge-site. We describe 
each Ge-oxyapatite compound in our dataset using the descriptors shown in the right. We employed 
pseudopotential core radii sum, Martynov-Batsanov electronegativity, valence electron number, and 
Shannon’s ionic radii descriptors. It is well known that these descriptors play an important role in 
structural determination. For more detailed information on significance of these descriptors, refer to [21]. 
 

• Through data mining the high-dimensional knowledge-base, we extract key electronic 
structure and crystal chemistry features that govern the structural stability. 



• The knowledge is extracted in the form of “if … then” rules that quantitatively identify 
the exact role of the key materials attributes in describing the crystal structure and 
properties. The rules are typically visualized in the form of a dendrogram, as shown in 
Figure 4. 

• Using the design rules obtained from the dendrogram, we search the periodic table and 
virtually add new, unexplored chemistries at various crystallographic sites in the Ge-
apatite lattice. Then we follow the dendrogram, which gives us the crystal structure 
classification of the new and untested chemical composition. 

• This screening strategy down-selects from the initial vast chemical search space a few 
potential candidates with the required structure, and these new materials are suggested for 
experimental validation and theoretical modeling. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 4. Dendrogram representing the classification model obtained from recursive partitioning. From 
the dendrogram we extract if … and … then design rules (as shown above) and use these rules for 
classifying the crystal structure of new and untested chemistries. 
 
While the dendrogram provides a guide to the development of the design rules, we can represent 
this information in the context of how much confidence in the existing knowledge space we have 
at each stage to make a decision. An alternative visualization schema is provided below that 

IF GeEN<=1.993 AND GePPR<=1.9 
AND LaPPR<=2.963 THEN P63/m 
structure is stable. 
IF GeEN<=1.993 AND GePPR<=1.9 
AND LaPPR>2.963 AND 
LaIR<=1.216 AND GePPR>1.605 
THEN P63/m structure is stable. 



track the evolution of our information database. This permits us to track which aspect of the 
electronic structure and its impact on bond geometry is playing a dominant role during the 
evolution of the design rules. The evolution of information and its physical meaning is discussed 
in Figures 5–7. The evolution of information discussed in these figures must be interpreted in 
conjunction with the dendrogram shown in Figure 4. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. The first design rule states that if the electronegativity at Ge-site is greater than 1.993, then we 
do not get single-phase apatite structure. Since electronegativity can be correlated with the charge 
distribution, this rule indicates that if the tetrahedral Ge-site becomes increasingly covalent then obtaining 
single-phase apatite structure is unfavorable. The value 57% indicates that this rule can explain the 
information about 57% of compounds that do not have single-phase apatite structure in the dataset. As 
noted in Section 3, 7 compounds in our dataset do not have single-phase apatite structure. This rule 
captures the behavior of 4 of 7 compounds in our dataset, or 57%. This information can also be obtained 
from the decision tree (shown in Figure 4) identified inside the parentheses. 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 6. The second design rule suggests that if the electronegativity at Ge-site is less than or equal to 
1.993 and the pseudopotential radius at Ge-site is greater than 1.9, then obtaining single-phase apatite 
structure is not favorable. Rabe et al. [21] have shown that when the electronegativity is combined with 
pseudopotential radius, then they correlate with the electron charge density information. As a result, this 
rule quantitatively identifies the key role of electronic structure in impacting the stability of single-phase 
region in Ge-oxyapatites. The two design rules (Figure 5 and Figure 6) together are sufficient to explain 
why certain chemistries with the stoichiometry La10-yAy(GexB1-xO4)6O2 do not have single-phase apatite 
structure. The rule also brings out the significance of the electronic structure of the tetrahedral unit in 
impacting the phase stability of apatites. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The third design rule states that if the electronegativity at Ge-site is less than or equal to 1.993 
and the pseudopotential radius at the Ge-site is greater than 1.9 and the pseudopotential radius at La-site is 
2.963, then the chemical composition will have single-phase P63/m (hexagonal) crystal symmetry. This 
condition is satisfied by 36% of chemistries with P63/m structure in the dataset. This rule brings out the 
significance of the tetrahedral and the LnIO6-structural unit in impacting the phase stability of P63/m 
symmetry. 
 
 
Similarly, we can further explore the dendrogram and investigate the key physical reason behind 
the structural stability of Ge-oxyapatites. The visualization scheme discussed in Figures 5–7 
refines our understanding of the complex Ge-oxyapatite crystal chemistry, which has to be 
further augmented by performing quantum mechanical calculations and experimental studies on 
chemical compositions that are classified to have P63/m crystal structure by the dendrogram. The 
dendrogram thus allows for accelerated screening of novel chemical compositions to guide 
highly targeted experimental and detailed theoretical studies of limited compositional regions. 
Thus, from a set of very limited initial dataset (18%) we identify the best solutions by 
partitioning the descriptor space. The Shannon entropy metric captures the association between 
the sequence of descriptors and the structural stability of Ge-oxyapatites. We track the evolution 
of information via visualizing the dendrogram and suggest a few new compounds with the target 
P63/m crystal structure by virtually exploring the 82% chemical search space. This is 
schematically shown in Figure 8. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 8. By combining the design rules deduced from dendrogram with the visualization scheme, we 
clearly understand the evolution of the information in the context of how much confidence of the existing 
knowledge space we have at each stage to make a decision. Thus by employing 18% of known 
experimental information, we can rapidly explore the unknown 82% chemical search space. Then we 
screen for novel chemical compositions to identify only those chemical compositions that form P63/m 
crystal structure. This screening strategy down-selects from the initial vast chemical search space a few 
potential candidates with the required structure, and these new materials are suggested for further 
experimental validation and detailed theoretical modeling. 
 
 
5. Summary 
 
In materials science, we encounter large quantities of sparse datasets. In this paper, we have 
shown how we can harness the information in smaller datasets for mapping and tracking 
structure-chemistry correlations in complex materials for expediting new materials discovery. 
Normally, crystallography is associated with visualization of crystal structure in the physically 
conceivable three dimensions. However, the success of our approach lies in moving beyond the 
three dimensions, where we employ a high-dimensional dataset using the discrete scalar 
descriptors associated with geometric and electronic structure attributes. The information entropy 
coupled with a recursive partitioning strategy helps in partitioning the high-dimensional 
descriptor space. The partitioning results in the extraction of chemical design rules, which 
suggests new materials. The representation of information in the context of how much 
confidence of the existing knowledge space we have at each stage to make a decision helps in 
linking uncertainty with materials discovery. We demonstrated the utility of our approach by 



building chemical design rules for classify the crystal structure of complex Ge-oxyapatites for 
intermediate temperature solid oxide fuel cell applications. 
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